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Abstract. The useof the Principal ComponentAnalysis techniquefor the analysis

of geophysicaltime serieshas beenquestionedin particular for its tendency to extract

componentsthat mix severalphysical phenomenaevenwhen the signal is just their

linear sum. We demonstrate with a data simulation experiment that the Independent

ComponentAnalysis, a recently developedtechnique, is able to solve this problem.

This new technique requires the statistical independenceof components,a stronger

constraint, that useshigher-orderstatistics, instead of the classical decorrelation, a

weakerconstraint, that usesonly second-orderstatistics. Furtherm,,re, ICA does not

require additional a _priori information such as the localization cot straint used in

Rotational Techniques.



1. Introduction

This work concerns methods for the identification of the physical causes of

variability of a given dynamical system from observations of its behavior. In many

cases, an observed time series is produced by a mixture, linear or nonlinear, of different

components representing different physical phenomena. In the linear case, the time

series x(]) with temporal dimension, N, at particular spatial coordinate (we will call

this a pixel), j E (1,..., M}, where M is the spatial dimension, is decomposed ,n time

as:

x(j) = G. tr = glal(j) + g2ty2(j) +... + gQaQ(j), (1)

where the temporal base functions, gl,..., gQ, the columns of matrix G, are unknown

time series describing a fixed dynamical behavior (vectors and matrices are indicated in

bold characters). In this paper, we consider decomposition in time, but the following

discussion would be the same for a decomposition in space. Each gi could be a signal

with a different physical cause operative in a particular geographical region represented

by a different score map (az(j) ; j = 1,... M}. One goal of an analysis is then to infer

the unknown contributing components from the observed data, x. In the linear case

h = J. z -_ tr, (2)

where J is an estimate of the unknown matrix G -1 and h is an estimate of the

unknown vector or. Statistical analysis methods that estimate J and h are called

component extraction techniques. Their ability to retrieve good estimates, h, of the true

components, tr, is highly dependent on the quality of the statistical dataset used (i.e.
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sufficiently large numberof independentexamplessampling all the variations involved)

and on the technicalassumptionsthat are madeabout J and h.

A common approach is to require the decorrelation of the extracted components (i.e.,

any two components are orthogonal)': the covariance matrix of extracted components

< h t • h > is constrained to be diagonal; but this decorrelation principle has an infinity

of solutions:

J=O'J0, (3)

where O is an undetermined Q x Q matrix so that O t. ® = IQ×Q. Jo = 12-1/2. E t

is a Q x N matrix With I2 the truncated diagonal matrix of the higher eigenvalues of

< x t • x > and E the N x Q matrix with the associated normalized eigenvectors in the

columns.

One particular decorrelation solution is the well-known Principal Component

Analysis (PCA) or, in the geophysical community, Empirical Orthogonal Function

(EOF), first used in atmospheric sciences by Lorenz (1951). In this technique, an

additional constraint is added to resolve the indeterminacy of the decorrelation solutions:

the successive extracted components have to explain the maximum remaining variance.

This solution is gi*en by taking O = IQ×Q in Equation (3). Three problems could

arise in using the PCA teechnique. (1) Even if the mixing of the components is linear

as in Equation (1), this maximum-explained-variance assumption can cause mixing

of different physical phenomena in the extracted components (Kim and Wu, 1999) as

we will show here (see Figure 1-A for an schematic illustration of this problem in a



2-dimentional case). (2) This mixing problem is also particularly serious when the

PCA is applied to data that havemore than one componentwith about the same

variance. In this case,the problem is not solvablesinceany orthogonal rotation of the

principal componentswill be a PCA solution (Figure l-B). (3) SincePCA imposesthe

orthogonality of the basefunctions i_ extracts, mixing problems also arise when the

actual physical base functions are ;iot orthogonal (Figure l-C).

The PCA assumptions (linearity, variances explained by the components or

orthogonality) used to resolve the solution indeterminacy are not known, a priori, to be

valid for a particular dataset. It these PCA assumptions are not valid, variations that

are not physically connected could be artificially gathered together into one extracted

component. This is the reason why PCA is often used in restricted geographical

domains instead of global domains to try to isolate a single dominant mode of variation,

wich PCA can correctly identify. Consequently, even if PCA is useful as a to01 for

compressing information by describing the most variance with the fewest terms in an

expansion, it can lead to misinterpretation of physical relationships.

Rotational Techniques (RT) were introduced (Hotel 1981, Richman 1981), in part,

to obtain a soluti0nmore physically interpretable. In these approaches, an additional

constraint of localization, based on the so called "simple structure" principle, is used

to solve the indeterminacy of the decorrelation solutions. There exist many proposed

criteria for this purpose: quartimax, varimax, transvarimax, quartimin, oblimax, etc

(Richman 1986). Two distinct classes of RT solution could be distinguished: the

Orthogonal Rotations that preserve the orthogonality constraint of the components,



and the Oblique Rotations that relaxethis constraint. However,the localization criteria

usedin both family of solutions arequite subjective and useof such a priori information

may not be well suited to all applications.

The Independent Component Analysis (ICA) method, briefly described in Section

2, is based on information theory and has been recently developed in the context of

signal processing studies and of the development of neural coding models (Bell and

Sejnowski 1995). The two major distinctions between the ICA approach and the

classical techniques are:

• The assumption of a linear mixture model is not required so an orthogonality

constraint is not applied. However, the example presented here happens to be one

where the signal is composed of the linear sum of components as in (1).

• The method extracts statistically independent components, even if these

components have a non-Gaussian probability distribution function, by making

use of higher order statistics, whereas the PCA or RT approaches use only

second-order statistics.

We argue that the ICA approach is a particularly promising technique which may

overcome the main pitfalls of the standard techniques (PCA or RT) for geophysical time

series analysis. When faced with observations of a system with unknown dynamics,

identifying the statistically independent variation mode seems more likely to be

meaningful than assuming, a priori, that the system is composed of linearly mixed,



orthogonal modesunlesssuchmodesca beshownto bepresentform other information

(North 1984). Moreover, if one or two modesare not known, a priori, to be dominant,

then maximizing the varianceexplainedby eachmodeasin PCA producesinappropriate

mixing. Using other subjectivecriteria alsoseemsdifficult to justify. Hence,the classical

techniquescan be usedin situations whereadditional information is availableto justify

their assumptionsasuseful approximations,but they canner be usedto searchfor new

understanding of the system dynamics becausethey makesuch strong assumptions

about it. ICA, by finding statistically independentmodes,may provide a better way

to explore the dyna_nicsof a system, like the atmosphere-oceansystem, that is known

to involve non-linear coupling of many modesacrossa wide rangeof space-timescales;

however,evenstatistical independenceis only a guide to the system'sbehavior.

A previous study that applies ICA to the analysisof variations of tropical sea

surfacetemperature (Aires et al. 2000) illustrates the potential of the ICA technique

to separatea geophysicaltime seriesinto more meaningful components. To illustrate

moreclearly how ICA handlesthe componentmixing problem, weconstruct a synthetic

dataset,where the true answerto the decompositionproblem is known, and apply both

PCA and ICA toextract components(Section3). We deliberately devisea dataset to

test whatever PCA can separatedistinct modesof variation that are added linearly as

many practitioners appear to expect. We showthat, evenin the caseof a linear sum of

components,the PCA techniquemixes the contributions, but that the ICA method can

correctly separatethe components without additional subjective constraints like those

used in RT.
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2. The Independent Component Analysis technique

In this section, we briefly review the main concepts underlying the Independent

Component Analysis (ICA) technique. For more details, the interested reader is referred

to Bell et al. (1995) and Aires et al. (2000). The ICA technique aims to extract

statistically independent components, a stronger constraint than the decc:.relation

requirement of the classical techniques. The statistical independence of _,vo variables hi

and h2 is determined when their joint distribution can be factored:

P(hl,h2) = P(hl). P(h2). (4)

This constraint involves higher-order statistics whereas the decorrelation constraint only

involves second-order statistics. Decorrelation is equivalent to statistical independence

only in the Gaussian case. So the higher-order statistics are particularly important

when the analyzed data have components with non-Gaussian distributions. Avoiding

the a priori assumption that second-order statistics are sufficient is important when

the components are unknown as is usually the case. It is also important to not confuse

the non-Gaussian character of the components with the non-Gaussian character of

the data itself; however, if the data havh a non-Gaussian distribution, then at least

one component is also non-Gaussian, since for the simplest linear mixture of Gaussian

components, the distribution would be Gaussian (a non-linear combination of Gaussian

distributions could be non-Gaussian). Some previous studies examine this non-Gaussian

behavior in the data (Burgers and Stephenson 1999, Aires et al. 2000). Without a

priori information on this matter, the use of ICA is recommended since its requirement
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of statistical independenceis moregeneralthan the decorrelationassumption.

The time seriesobservationsaregathered into a dataset Xj t of M observations

x(j) = (xj t ; t = 1,..., N) with j E {1,..., M}, where M is the spatial dimension

of the time series and N is its temporal dimension. The times series x(j) is assumed

to be a mixture, linear or nonlinear, of several statistically independent components

i = 1,...,Q}:O" ---- {O'i ;

x(j) = A(a(j)) (5)

wh(re .4 is an unknown mixture function, which is, by hypothesis, non-singular (i.e. it

can be inverted).

The goal of ICA is to retrieve a function (I) : x --4 h, where h is an estimate of _r

and the terms {hi ; i = 1,..., Q} are statistically independent. The estimate, h, is

defined as a deterministic function (linear or not) of the observations:

hi=rbi(Wi, x) ; i= l,...,Q (6)

where {Wi ; i = 1,..., Q} is the set of parameters of (I). The number of components,

Q, is here supposed to be known (this number can be estimated by a break in the

frequency spectrum"of the data, for example). With real observations, Q depends

on the analysis objectives: extracting a lot of components allows for more complete

description of the variability but makes the interpretation much more complicated,

whereas extracting fewer components focuses attention on fewer different phenomena at

the cost of explaining less of the variability. The interested reader should refer to an

article by Nadal et al. (1999).
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The parameters, W,, are estimated by applying a gradient descent algorithm to

a cost function that specifies the statistical independence of the {hi ; i = 1, ..., Q}.

Different equivalent cost functions could be used; we focus here on the infomax approach

to ICA (Nadal and Parga 1994) from which simple algorithms have been derived (Bell

and Sejnowski 1995). Information theory is used to specify the statistical independence

cost function: the fundamental quantity used here is information redundancy. Given Q

variables, hi, h2,..., hQ, the information redundancy 7P,.(hl, h2,..., hQ) is defined as the

Kullback diverge nce between the joint distribution P(hl, h2,..., hQ) and the factorized

distribution P(h _). P(h2) • • • P(hQ):

f__ Q Ph(h)n(h) = 1-I dhi Ph(h) log (7)
,=1 I-IQ=I Pi(h,)

This informatiol_ redundancy comes from information theory and measures the

difference between the joint and the factorized distribution: when the redundancy

T4.(h) = O, Ph(h) = l-I_=l Pi(hi), which means, by the definition in equation (4), that the

components of vector h are statistically independent.

The use of a gradient descent algorithm to minimize this cost function is interesting

since it allows for the introduction of any a priori information about the solution that

may be available. For such a purpose, a second term in the quality criterion is added

that represents any additional constraint(s) on the solution. For example, this additional

information could be a constraint on the shape of the solutions, on the distance of

the solution from a first guess, or on the regularity properties of the solution. Such a

regularization approach, also used in variational assimilation methods for example, is a
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classicalway of using all the information that is available.

A nonlinear regressionmodel for the extraction model in Equation (6) has to be

specified. The Multi-Layer Perceptron (MLP) is often chosen: this artificial Neural

Network model is preferred for its nonlinear behavior. In this experiment, we usea

simple MLP architecture with no hidden layer. This neural mapping is definedby (from

right to left in Figure 2):

y = f(h)= f(J. x), (8)

where f, the logistic function, is only used for algorithmic considerations. The extracted

q

components are not the outp it y or the neural mapping (8), but the vector h = J • x.

We use this model because tLe mixture model is linear (the nonlinear mixture case will

be the subject of future work).

With the redundancy reduction criterion and no-hidden-layer architecture, an

algorithmic implementation of the ICA has been found (Bell and Sejnowski 1995):

AJ_k (x Jik + f_ " __, Jlk " hi (9)
l

where

00yi "0, ,Oyi,

This algorithm is described in a more practical way in the appendix. 1

(10)

1See also the web page http://www.cnl.salk.edu/ tewon/ica_cnl.html of the Compu-

tational Neuroscience Laborabory of Terry Sejnowski at The Salk Institute for links to

recent literature, software and demos concerning the ICA paradigm.
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3. Application to a linear sum of components

a. Construction of the synthetic dataset

The synthetic data.set used in this study is generated to mimic the results of that

are often expected from a PCA decomposition. For this purpose, Q = 6 components

representing six different dynamical phenomena are used. Each component is described

by a different temporal base function gi (solid lines in Fi_':ure 3) constructed from

composites of sinusoids with different frecaencies and phases. These base functions have

been normalized to give a standard deviz.tion of unity; i.e. each component accounts

for a similar amount of temporal variance. The temporal dimension of these base

functions is taken to be N = 365 (e.g., oae year of daily data). A spatial resolution

of 2.50 x 2.50 is chosen, corresponding to M - 144 × 72 = ]0368 pixels. Finally, the

dataset, Xj _ --- (x(j) E R g ; j = 1,..., M), where R y is the space of real vectors of

dimension N, N = 365 and M = 10368, is formed from the time series x(j) for each

pixel j by the linear sum of the base functions, x(j) = glal() + ... + gQaQ(j) +

(linear model of Eq. 1). The term c is a Gaussian-distributed noise (zero mean and

standard-deviation of 0.5), representing very noisy data.

The {gi(j) ; i = 1,...,Q} indicate the strength of each component, i, at each

pixel, j. These strengths are constructed to have a geographical Gaussian distribution,

giving a different ellipsoidal distribution for each component (left column in Figure 4).

Land contours are shown for easier description of the modes. One of the components

has two peaks in its spatial distribution to represent a teleconnection pattern (map of



13

component 1 in left column of Figure 4), so the total number of ellipsoidal peaksis

seven. Also, the geographicalextert of two of the componentsoverlapsin the Indian

Ocean (mapsof components4 and 6 in left column of Figure 4) to complicate the

componentextraction process.

The varianceexplainedby th,_Q = 6 components and the variance from the added

noise are shown in Table 1. The _ ariance explained by the components represents 67 %

of the total variance and the nois,.., represents 33 %. The variance of a component results

from the combination of the temporal variability of t :le base function as a function of

amplitude (that has been normalized here) and frequ 'ncy, and the spatial extent of the

component.

b. Results of PCA and IC/_.

The PCA components ar:_determined by computing the matrix J0. The best

number of PCA components to extract isdetermined by observing the spectrum of

cumulative percent of varian,:eexplained by the PCA components (Figure 5). The first

Q = 6 PCA components represent 67.7 % of the totalvariance and the 359 remaining

components that explain 32 3 % of the _totalvariance representthe noise in the dataset.

The temporal PCA base fuactions (crossed linesin Figure 3) are each compared with

the realbase function to _hich itbest corresponds. PCA base functions 2, 3 and 4

provide a relativelygood estimate of the true functions,although there are some errors

near the peak values. PCA temporal base functions I, 5 and 6 (low frequencies)are

much worse fits.In particular,higher frequencieshave been mixed in with the real
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base functions. The corresponding PCA score maps are defined at pixel j by the values

(al,... aQ.)(j) = Jo • Xj* and are shown in Figure 4 (middle column), where Xj* is

the jth column of data matrix X . We see that the PCA (or EOF) technique confuses

elements from the different components, the general mixing problem, such that all

of its components exhibit many more geographic peaks than in the real components.

Even if the corresponding PCA temporal base function is relatively well retrieved, the

corresponding score map still exhibits the mixing problem (see PCA base function No 2

in Figure 3 and the corresponding PCA score map in Figure 4). Oi,e cause of the mixing

is well illustrated in Table 1 where the variance explained by eac]: PCA components

is compared to the variance of the actual components. The first PCA component

explains 24.4 % of the total variance, which is much more than the true variance of

13.3 %. The variance maximization constraint on the solution in PCA means that the

first component is the mixture of many true component variabilities, whereas the 6 th

PCA component represents only 3.1% which is a considerable under-estimate of the

real value of 10 %. The noise level estimate of 32.3 % is a good estimate, but its small

under-estimate of the real noise is due to the projection of noise into the first 6 PCA

components (representing 0.7 %).

This mixing tendency of the PCA could suggest many more teleconnections in

observations than are actually present. Since all six components contribute the same

amount of variance, the PCA technique has combined many of the actually-separate

components into several of its components, trying to maximize the amount of variance

explained by each. However, the method is then compelled to alternate positive and
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negativevaluesto compensatefor having too much variancewhenthe componentsare

addedback together. This effect is especiallyapparent for the overlapping components

in the Indian Ocean: two PCA basefunctions possessbroad central peaksspanning

the geographicdistribution of both of the real componentsand two others possess,in

this samelocation, two opposite-signedpeaks (seePCA scoremapsof components1,4,

5 and 6 in Figure 4, middle column). A similar projection of real components into

more than one PCA component occurs when a geographically isolated mode moves

during the time period (Kim and Wu 1999). Moreover, the component with t_:o peaks

in the Americas, relSresenting a real teleconnection, shows up in four of the )CA

components (components 1, 3, 4 and 6 in Figure 4, middle column), but mix¢=l with

other components as well, suggesting teleconnections between the Americas and the

South Atlantic and Indian Oceans that do not exist.

For the ICA, a "whitening" procedure is applied first using the PCA solution: the

observed data, x(j), are projected onto the first Q = 6 PCA components using the

matrix J0. The ICA technique is then applied to the "whitened" data, 5:(j) = J0" x(j)

(dimension Q = 6 instead of N = 365). This is equivalent to performing an oblique

rotation on the PCA initial solution, see (Nadal et al. 1999, Aires et al. 2000). Thus

the 6 ICA extracted components explain the same amount of variance as the 6 PCA

components (67.7 %).

The six ICA base functions are shown in Figure 3 (dotted lines). The ICA base

functions are very similar to the real base functions; this comparison shows how the

ICA technique has corrected its first guess (the PCA solution to be closer to the true
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temporal basefunctions. The additional information conveyedby the requirement of

statistical independenceis nicely illustrated: the ICA solution is better than the PCA

solution for all six components. The ICA scoremaps are presentedin Figure 4 (right

column). The presenceof large-amplitude noise amplifies the ambiguity, producing

weak mixing of the components(seethe scoremap for component5, for example); but

generally,the coml:,_nentsare well retrieved and separated,eventhe teleconnection

mode (ICA component1 in Figure 4, right column) and the two overlapping modesin

the Indian Ocean (ICA component4 and 6 in Figure 5, right column). The ICA score

mapsare alwaysan improvementover the PCA solution. When the noise is removed,

the ICA separatesthe original six modesvery cleanly with very little mixing; thus, in

practice, if the noiseamplitude is significantly smaller than the signal amplitude, the

ICA solution is very closeto the real solution.

Table 1 showsthat the varianceexplainedby the ICA componentsis closer to

the real solution than the PCA components. Differencesbetween the true and ICA

explainedvariancefor eachcomponentsare lessthan 0.6%. Discrepanciesare the result

of the projection of somepart of the noise into the ICA components.

4. Concluding remarks

PCA (or EOF analysis) provides an economical way to summarize or characterize

the complex time and regional variations of a geophysical parameter over the whole

globe with only a few functions. When the total time variance is dominated by one

or two separate orthogonal modes that add approximately linearly and with different
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variances,then this analysiscan also correctly identify suchmodes. However,PCA is

now routinely applied to the study of atmosphericobservationanomalies,which are

definedasdeviations from the averageleading mode, the annual cycle. There are three

problems. (1) The annual cycle, itself, cannot alwaysbe describedby a single EOF

mode (e.g.,Rossowet al. 1993),indicating that its phaseand/or regionaldistribution

arevarying over the time record _othat the mean annual cycleis only an approximation

to the actual annual cycle in a given year. (2) The severalanomaliesthat have been

identified by removalof the mean annual cyclegenerallyonly account for a few percent

of the total variance'and are not a lot larger than data noise. (3) The fluid dynamics

of the atmosphericcirculation strongly couplesmotions on different spaceand time

scales,i.e., the separatemodescombine non-linearly to produce the total time signal.

The latter fact means that the annual cycle is constantly interacting non-linearly with

atmospheric variations on a whole range of other time scales, so that the removal of

the mean annual cycle from a dataset leaves behind a residual that is only a partial

representation of these physical interactions, producing an artificial mode from the

analysis method. Thus, there is every reason to suspect that the assumptions that

underlie the PCA are violated when apiJlied to atmospheric circulation anomalies. This

leads to the worry that the anomalies that have been identified and studied are not

physical, but are either created by the mixing of many separate physical modes having

similar amplitudes, but different regional distributions and interacting non-linearly, or

by the mixing (aliasing) of the annual cycle into other modes by observation errors. Our

simple example shows how extra modes can be generated by regional overlaps between
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two different modes and how spurious teleconnectionscan be found where none exist

or distorted where they do exist, evenwhen the modesadd linearly, (i.e., favorable

condition for the PCA).

Our simple linear examplealso'shows the potential of the ICA technique for

separating a complex signal in a more meaningful way. The mixing problem inherent

in the PCA technique and the artifacts produced by the orthogonality and maximum

varianceconstraints of PCA areavoidedwith the ICA approach. Moreover, the useof

higher-orderstatistics to determinestatistical independenceassumesmuch lessabout

the character of the parameter distributions than the PCA. In the casewhere the

componentsof the system are linked in a certain way (the climate is certainly closer to

this model), the ICA would be able to extract componentsthat area kind of prototype,

defined to be as statistically distinct as possible, for an optimal description of the

variability in the observations. This meansthat ICA, solving the mixing problem, is

moresuitable for global studies,which is not the caseof PCA.

As with the classicalPCA technique, this first ICA algorithm is not able to deal

correctly with propagating components.But the ICA paradigm may be a sufficiently

generalconceptto-be used in a moresophisticatedway like complex ICA or nonlinear

ICA. Our experiment on synthetic data, wherethe solution of the componentextraction

problem is known, encouragesfurther work to extend the ICA paradigm to non-linear

cases:this requiresdevelopmentof non-linearsolution algorithms and testing for cases

wherethe combination of modesis non-linear, when components are physically linked,

and for cases with propagating modes.
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Appendix: Principal steps of the algorithm

We adopt here the linear model x = G .e r, where x is the observation, G is the

base function matrix and cr is the vector of components to estimate. The goal of the

statistical decomposition technique is to estimate a matrix J = G -1, the filter matrix,

using only a dataset of observations {x _ ; e = 1,..., E}, where E is the number of

samples in the dataset. With this matrix J, for each observation z, the components o"

are estimated by h = J- z, and the base function matrix G is estimated by the inverse

matrix j-1.

The principal steps of the time series analysis by the ICA technique are:

• Pre-processing of dataset: The dataset Xj t = {z(j) E R N ; j = 1,..., M}, where

t is the time index and j is the space index (geographical locations), often requires a

pre-processing step:

- spatial, temporal or spatio-temporal interpolation to resolve missing data

problems,

- filtering of data to suppress undesirable frequencies,

- de-trending tO obtain a stationary data,

- removing the annual cycle to examine interannual anomalies.

None of these steps is required. For example, we have commented in the paper on the

dangers of removing the annual cycle.

• Chose the space for the decomposition:
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- in time, which is the approach we have adopted in our study: x(j) =

glal(j) +... + gQCQ(j) + 6,

- in space,
i

- in frequency,

- in a mixture of these spaces.

The observations (a time series or a geographical field, ... ) are noted, in the following,

by the d-dimensional vector x _ and the dataset is {x _ ; e = 1,...,E}.

• Center the dataset: The observation mean < x _ > is removed from the dataset:

x e _ x e- < x e >. This step is necessary for statistical techniques where data are

supposed to have zero-mean.

• Normalize the dataset: If the user wants to put the same statistical weight on each

coordinate of the observation x _ (that could be a date in time decomposition, a pixel

location in space decomposition, ... ): observations in the dataset are normalized by the

standard-deviation vector x _ e-- x_/ex.

• Eigen-vector decomposition: The covariance (or correlation, in the case of

normalized observations) matrix < xt . x > is estimated from the dataset. The

eigen-values A (diagonal matrix) and the eigen-vector matrix V of < ::t. x > are then

computed using a classical numerical routine. The number of PCA or ICA extracted

components Q is chosen by observing the spectrum of eigen-values.

• PCA solution:
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The d × Q PCA base function matrix GpcA contains in its columns the first

Q eigen-vectors of V (the columns of V represent time series in the time

decomposition, and geographical field in the space decomposition, ... ).

Since, by definition, V -1 = V t, the filter PCA matrix JPCA is equal to the

transposed Q x d base function matrix GpCA. Then, the extracted components h

that estimate the true components ¢r are the projection of the observation x onto

the filters: h - JPCA • X.

- The first Q eig_en-values in A represents the variability explained by each of the Q

components.

• ICA solution:

1 Pre-whitening of dataset: The PCA solution is used for a pre-processing data step:

the observations x e are projected into the PCA filters: x e +-- JPCA • Xe. The ICA

algorithm is then applied into these Q-dimensional data.

2 The ICA solution JICA is initialized as the identity matrix IQ×Q. This, associated

to the previous whitening step of data, is equivalent to taking the PCA solution

as first guess for ICA.

3 For the minimization of the criterion specifying the statistical independence, a

stochastical gradient descent algorithm is used. The stochastical principle uses

the gradient descent formula iteratively in unique random samples of the dataset,

contrary to the classical approach where the gradient descent formula is applied
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iteratively to the global data.set(i.e. a deterministic algorithm). The stochastical

characterof an optimization algorithm allows theoretically, under someconstraint

not discussedhere, for the optimization techniqueto reachthe global minimum of

the criterion instead of the local minimum wherea deterministic algorithm could

be trapped.

4 An observationz e is randomly chosen in the data.set. The propagation through

the neuJ al network (chosen model for the extraction component) is given by:

v = f(h) = f(Jrca" Xe), where/(a) = 1/1 + exp(-fi, a) is the logistic function

(/3 is a I.arameter controlling the slope of the logistic function, we take fl = 2.0).

The FORTRAN routine of this process is:

c - - propagation into the neural network

doi=l,d

h(i) = O.dO

dok=l,d

h(i) = h(i) + J, cA(i,k) * xe(k)

enddo

h(i) -- h(i) + bia(i)

u(i) = 1.dO/(1.dO + dexp(-/3 • h(i)))

enddo

where bia is the classical bias vector in a MLP neural network (not shown in the
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text for simplicity). We use, in this routine, double precisionvariables to avoid

numerical instabilities.

5 The learning processis then definedas:

c - - transitory quantities

doj = 1,d

hhh(j) = O.dO

dok=l,d

l_hh(j) = hhh(j) + Jjca(k,j) * h(k)

enddo

enddo

c - - modification of weights

do/= 1,d

doj=l,d

&

JIcA(i,j) = JICA(i,j) + param,

(J)cA(i,j) + _ * (1.dO - 2.d0 • y(i)) • hhh(j))

enddo

bia(i) = bia(i) + j3 • (1.d0 - 2.d0 • y(i))

enddo
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where param is the learning param, ter of the gradient descent optimization (we

take param = 0.0005).

6 Stopping criterion: many criteria can be used to define when stopping the previous

learning steps. The simplest criterio,_ is to determine a priori the number of

learning steps. A better adequate cr terion is the measure of the difference

between solution JICA at time t and at time t + 1: if this difference is low,

the algorithm has converged. Ar othe_ stopping criterion is the measure of the

statistical independence of the e_tract_ _ components h: cumulants (i.e. additive

higher-order moments) are a pra_.tical _:ay to do that, but this approach is still

computationally expensive. The learnir_ algorithm returns to step 4 until the

stopping criterion is reached.

• Analysis of results: When the matrix JICA has been determined by ICA, the global

ICA filters (taking into account the PCA pre-processing) are defined by the Q x d

matrix: JGLO = JICA • JPCA

The projection of data is used to estimate ,he components: h = JGLO " ze

The d x Q ICA base function matrix GGL _ = JGLO -1 = GPCA • JICA -1 is

normalized to obtain normalized ICA base functions, as in PCA approach.

Computation of explained variance of each of the base functions.
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Figure 1. Problems encountered by PCA when observations have dimension 2 (coor-

dinates X and Y) and come from two components defining ellipses E1 and E2, the line

D represents the first PCA axe defining the first PCA component: A) mixing due to

the maximum explained constraint, B) indeterminacy when two components have same

variance, and C) mixing due to the non-orthogonality of components.

Figure 2. Tie component extraction model: the perceptron architecture, where x is

the observation, h is the extracted component vector and h is the ouput network.

Figure 3. Temporal base functions gi: ACTUAL (solid lines), PCA estimates (crossed

lines) and ICA estimates (points).

Figure 4. The components score maps of actual components ai (left column), of &e

PCA extracted components hi (middle column), and of the ICA extracted components

hi (right column): components number 1-6 from the top to the bottom, colors from the

blue to the red (rainbow) representing range 0-1 for actual amplitudes (left colum) and

-3 to +3 for extracted components amplitudes (middle and right column)

Figure 5. Cumulative percent of explained variance by the PCA components



Table 1. Variance explained by

Noise, REAL, PCA and ICA com-

ponents

Component REAL PCA ICA

1

2

3

4

5

6

13.3 24.4 12.7

12.6 14.5 13.0

10.7 10.7 11.3

10.7 8.8 10.2

10.7 6.2 10.3

10.0 3.1 10.0

Noise 33.0 32.3 32.3
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